Предел приращения функции к приращению аргумента называется. Open Library - открытая библиотека учебной информации. Производная и дифференциал функции

Не всегда в жизни нас интересуют точные значения каких-либо величин. Иногда интересно узнать изменение этой величины, например, средняя скорость автобуса, отношение величины перемещения к промежутку времени и т.д. Для сравнения значения функции в некоторой точке со значениями этой же функции в других точках, удобно использовать такие понятия, как «приращение функции» и «приращение аргумента».

Понятия "приращение функции" и "приращение аргумента"

Допустим, х - некоторая произвольная точка, которая лежит в какой-либо окрестности точки х0. Приращением аргумента в точке х0 называется разность х-х0. Обозначается приращение следующим образом: ∆х.

  • ∆х=х-х0.

Иногда эту величину еще называют приращением независимой переменной в точке х0. Из формулы следует: х = х0+∆х. В таких случаях говорят, что начальное значение независимой переменной х0, получило приращение ∆х.

Если мы изменяем аргумент, то и значение функции тоже будет изменяться.

  • f(x) - f(x0) = f(x0 + ∆х) - f(x0).

Приращением функции f в точке x0, соответствующим приращению ∆х называется разность f(x0 + ∆х) - f(x0). Приращение функции обозначается следующим образом ∆f. Таким образом получаем, по определению:

  • ∆f= f(x0 +∆x) - f(x0).

Иногда, ∆f еще называют приращением зависимой переменной и для обозначения используют ∆у, если функция была, к примеру, у=f(x).

Геометрический смысл приращения

Посмотрите на следующий рисунок.

Как видите, приращение показывает изменение ординаты и абсциссы точки. А отношение приращения функции к приращению аргумента определяет угол наклона секущей, проходящей через начальное и конечное положение точки.

Рассмотрим примеры приращения функции и аргумента

Пример 1. Найти приращение аргумента ∆х и приращение функции ∆f в точке х0, если f(х) = х 2 , x0=2 a) x=1.9 b) x =2.1

Воспользуемся формулами, приведенными выше:

a) ∆х=х-х0 = 1.9 - 2 = -0.1;

  • ∆f=f(1.9) - f(2) = 1.9 2 - 2 2 = -0.39;

b) ∆x=x-x0=2.1-2=0.1;

  • ∆f=f(2.1) - f(2) = 2.1 2 - 2 2 = 0.41.

Пример 2. Вычислить приращение ∆f для функции f(x) = 1/x в точке х0, если приращение аргумента равняется ∆х.

Опять же, воспользуемся формулами, полученными выше.

  • ∆f = f(x0 + ∆x) - f(x0) =1/(x0-∆x) - 1/x0 = (x0 - (x0+∆x))/(x0*(x0+∆x)) = -∆x/((x0*(x0+∆x)).

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

В отношении функции $z=f(x,y)$ рассмотрим понятия общего (полного) и частного приращений функции.

Пусть дана функция $z=f(x,y)$двух независимых переменных $(x,y)$.

Замечание 1

Так как переменные $(x,y)$ являются независимыми, то одна из них может изменяться, а другая при этом сохранять постоянное значение.

Дадим переменной $x$ приращение $\Delta x$, при этом сохраним значение переменной $y$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $x$. Обозначение:

Аналогично дадим переменной $y$ приращение $\Delta y$, при этом сохраним значение переменной $x$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $y$. Обозначение:

Если же аргументу $x$ дать приращение $\Delta x$, а аргументу $y$ - приращение $\Delta y$, то получается полное приращение заданной функции $z=f(x,y)$. Обозначение:

Таким образом, имеем:

    $\Delta _{x} z=f(x+\Delta x,y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $x$;

    $\Delta _{y} z=f(x,y+\Delta y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $y$;

    $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$ - полное приращение функции $z=f(x,y)$.

Пример 1

Решение:

$\Delta _{x} z=x+\Delta x+y$ - частное приращение функции $z=f(x,y)$ по $x$;

$\Delta _{y} z=x+y+\Delta y$ - частное приращение функции $z=f(x,y)$ по $y$.

$\Delta z=x+\Delta x+y+\Delta y$ - полное приращение функции $z=f(x,y)$.

Пример 2

Вычислить частные и полное приращение функции $z=xy$ в точке $(1;2)$ при $\Delta x=0,1;\, \, \Delta y=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} z=(x+\Delta x)\cdot y$ - частное приращение функции $z=f(x,y)$ по $x$

$\Delta _{y} z=x\cdot (y+\Delta y)$ - частное приращение функции $z=f(x,y)$ по $y$;

По определению полного приращения найдем:

$\Delta z=(x+\Delta x)\cdot (y+\Delta y)$ - полное приращение функции $z=f(x,y)$.

Следовательно,

\[\Delta _{x} z=(1+0,1)\cdot 2=2,2\] \[\Delta _{y} z=1\cdot (2+0,1)=2,1\] \[\Delta z=(1+0,1)\cdot (2+0,1)=1,1\cdot 2,1=2,31.\]

Замечание 2

Полное приращение заданной функции $z=f(x,y)$ не равно сумме ее частных приращений $\Delta _{x} z$ и $\Delta _{y} z$. Математическая запись: $\Delta z\ne \Delta _{x} z+\Delta _{y} z$.

Пример 3

Проверить утверждение замечания для функции

Решение:

$\Delta _{x} z=x+\Delta x+y$; $\Delta _{y} z=x+y+\Delta y$; $\Delta z=x+\Delta x+y+\Delta y$ (получены в примере 1)

Найдем сумму частных приращений заданной функции $z=f(x,y)$

\[\Delta _{x} z+\Delta _{y} z=x+\Delta x+y+(x+y+\Delta y)=2\cdot (x+y)+\Delta x+\Delta y.\]

\[\Delta _{x} z+\Delta _{y} z\ne \Delta z.\]

Определение 2

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Определение 3

Если для каждой совокупности $(x,y,z,...,t)$ значений независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией переменных $(x,y,z,...,t)$ в данной области.

Обозначение: $w=f(x,y,z,...,t)$.

Для функции от трех и более переменных, аналогично как для функции двух переменных определяются частные приращения по каждой из переменных:

    $\Delta _{z} w=f(x,y,z+\Delta z)-f(x,y,z)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $z$;

    $\Delta _{t} w=f(x,y,z,...,t+\Delta t)-f(x,y,z,...,t)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $t$.

Пример 4

Записать частные и полное приращение функции

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=((x+\Delta x)+y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=(x+(y+\Delta y))\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=(x+y)\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=((x+\Delta x)+(y+\Delta y))\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Пример 5

Вычислить частные и полное приращение функции $w=xyz$ в точке $(1;2;1)$ при $\Delta x=0,1;\, \, \Delta y=0,1;\, \, \Delta z=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=(x+\Delta x)\cdot y\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=x\cdot (y+\Delta y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=x\cdot y\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=(x+\Delta x)\cdot (y+\Delta y)\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Следовательно,

\[\Delta _{x} w=(1+0,1)\cdot 2\cdot 1=2,2\] \[\Delta _{y} w=1\cdot (2+0,1)\cdot 1=2,1\] \[\Delta _{y} w=1\cdot 2\cdot (1+0,1)=2,2\] \[\Delta z=(1+0,1)\cdot (2+0,1)\cdot (1+0,1)=1,1\cdot 2,1\cdot 1,1=2,541.\]

С геометрической точки зрения полное приращение функции $z=f(x,y)$ (по определению $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$) равно приращению аппликаты графика функции $z=f(x,y)$ при переходе от точки $M(x,y)$ к точке $M_{1} (x+\Delta x,y+\Delta y)$ (рис. 1).

Рисунок 1.

по медицинской и биологической физике

ЛЕКЦИЯ №1

ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

ЧАСТНЫЕ ПРОИЗВОДНЫЕ.

1. Понятие производной, ее механический и геометрический смысл.

а) Приращение аргумента и функции.

Пусть дана функция y=f(х), где х– значение аргумента из области определения функции. Если выбрать два значения аргумента х о и х из определенного интервала области определения функции, то разность между двумя значениями аргумента называется приращением аргумента: х - х о =∆х.

Значение аргумента x можно определить через x 0 и его приращение: х = х о + ∆х.

Разность между двумя значениями функции называется приращением функции: ∆y =∆f = f(х о +∆х) – f(х о).

Приращение аргументаи функции можно представить графически (рис.1). Приращение аргумента и приращение функции может быть как положительным, так и отрицательным. Как следует из рис.1 геометрически приращение аргумента ∆х изображается приращением абсциссы, а приращение функции ∆у – приращением ординаты. Вычисление приращения функции следует проводить в следующем порядке:

    даем аргументу приращение ∆х и получаем значение – x+Δx;

2) находим значение функции для значения аргумента (х+∆х) – f(х+∆х);

3) находим приращение функции ∆f=f(х + ∆х) - f(х).

Пример: Определить приращение функции y=х 2 , если аргумент изменился от х о =1 до х=3. Для точки х о значение функции f(х о)=х² о; для точки (х о +∆х) значение функции f(х о +∆х) = (х о +∆х) 2 = х² о +2х о ∆х+∆х 2 , откуда ∆f = f(х о +∆х)–f(х о) = (х о +∆х) 2 –х² о = х² о +2х о ∆х+∆х 2 –х² о = 2х о ∆х+∆х 2 ; ∆f = 2х о ∆х+∆х 2 ; ∆х = 3–1 = 2; ∆f =2·1·2+4 = 8.

б) Задачи, приводящие к понятию производной. Определение производной, ее физический смысл.

Понятие приращения аргумента и функции необходимы для введения понятия производной, которое исторически возникло исходя из необходимости определения скорости тех или иных процессов.

Рассмотрим, каким образом можно определить скорость прямолинейного движения. Пусть тело движется прямолинейно по закону: ∆Ѕ= ·∆t. Дляравномерного движения:= ∆Ѕ/∆t.

Для переменного движения значение ∆Ѕ/∆tопределяет значение ср. , т.е. ср. =∆Ѕ/∆t.Но средняя скорость не дает возможности отразить особенности движения тела и дать представление об истинной скорости в момент времени t. При уменьшении промежутка времени, т.е. при ∆t→0 средняя скоростьстремится к своему пределу – мгновенной скорости:

 мгн. =
 ср. =
∆Ѕ/∆t.

Таким же образом определяется и мгновенная скорость химической реакции:

 мгн. =
 ср. =
∆х/∆t,

где х – количество вещества, образовавшееся при химической реакции за время t. Подобные задачи по определению скорости различных процессов привели к введению в математике понятия производной функции.

Пусть дана непрерывная функция f(х),определенная на интервале ]а,в[иее приращение ∆f=f(х+∆х)–f(х).Отношение
является функцией ∆х и выражает среднюю скорость изменения функции.

Предел отношения , когда ∆х→0,при условии, что этот предел существует, называется производной функции:

y" x =

.

Производная обозначается:
– (игрек штрих по икс);f" (х) – (эф штрих по икс); y" – (игрек штрих); dy/dх(дэ игрек по дэ икс); - (игрек с точкой).

Исходя из определения производной, можно сказать, что мгновенная скорость прямолинейного движения есть производная от пути по времени:

 мгн. = S" t = f" (t).

Таким образом, можно сделать вывод, что производная функции по аргументу х есть мгновенная скорость изменения функции f(х):

у" x =f" (х)= мгн.

В этом и заключается физический смысл производной. Процесс нахождения производной называется дифференцированием, поэтому выражение «продифференцировать функцию» равносильно выражению «найти производную функции».

в) Геометрический смысл производной.

П
роизводная функции у = f(х)имеет простой геометрический смысл, связанный с понятием касательной к кривой линии в некоторой точкеM. При этом, касательную, т.е. прямую линию аналитически выражают в виде у = кх = tg· х, гдеугол наклона касательной (прямой) к оси Х. Представим непрерывную кривую как функцию у= f(х), возьмем на кривой точкуMи близкую к ней точку М 1 и приведем через них секущую. Ее угловой коэффициент к сек =tg β =.Если приближать точку М 1 к M, то приращение аргумента ∆х будет стремиться к нулю, а секущая при β=α займет положение касательной. Из рис.2 следует:tgα =
tgβ =
=у" x . Но tgαравен угловому коэффициенту касательной к графику функции:

к = tgα =
=у" x = f" (х). Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом и состоит геометрический смысл производной.

г) Общее правило нахождения производной.

Исходя из определения производной, процесс дифференцирования функции можно представить следующим образом:

f(х+∆х) = f(х)+∆f;

    находят приращение функции: ∆f= f(х + ∆х) - f(х);

    составляют отношение приращения функции к приращению аргумента:

;

Пример: f(х)=х 2 ; f" (х)=?.

Однако, как видно даже из этого простого примера, применение указанной последовательности при взятии производных – процесс трудоемкий и сложный. Поэтому для различных функций вводятся общие формулы дифференцирования, которые представлены в виде таблицы «Основных формул дифференцирования функций».

1. приращение аргумента и приращение функции.

Пусть дана функция . Возьмём два значения аргумента: начальное и изменённое, которое принято обозначать
, где - величина на которую изменяется аргумент при переходе от первого значения ко второму, оно называется приращением аргумента.

Значения аргумента и соответствуют определённым значениям функции: начальное и изменённое
, величину , на которую изменяется значение функции при изменении аргумента на величину , называется приращением функции.

2. понятие предела функции в точке.

Число называется пределом функции
при, стремящемся к , если для любого числа
найдётся такое число
, что при всех
, удовлетворяющих неравенству
, будет выполняться неравенство
.

Второе определение: Число называется пределом функции при, стремящемся к , если для любого числа существует такая окрестность точки , что для любого из этой окрестности . Обозначается
.

3. бесконечно большие и бесконечно малые функции в точке. Бесконечно малая функция в точке – функция, предел которой, когда она стремится к данной точке равен нулю. Бесконечно большая функция в точке – функция предел которой когда она стремится к к данной точке равен бесконечности.

4. основные теоремы о пределах и следствия из них (без доказательства).





следствие: постоянный множитель можно вынести за знак предела:

Если последовательности и сходятся и предел последовательности отличен от нуля, то






следствие: постоянный множитель можно вынести за знак предела.

11. если при существуют пределы функций
и
и предел функции отличен от нуля,

то существуют также и предел их отношения, равный отношению пределов функций и :

.

12. если
, то
, справедлива и обратная.

13. теорема о пределе промежуточной последовательности. Если последовательности
сходящиеся, и
и
то

5. предел функции на бесконечности.

Число а называется пределом функции на бесконечности, (при х стремящемся к бесконечности) если для любой последовательности стремящемся к бесконечности
соответствует последовательность значений стремящихся к числу а .

6. gределы числовой последовательности.

Число а называется пределом числовой последовательности , если для любого положительного числа найдётся натуральное число N, такое, что при всех n > N выполняется неравенство
.

Символически это определяется так:
справедливо .

Тот факт, что число а является пределом последовательности , обозначается следующим образом:

.

7.число « е ». натуральные логарифмы.

Число « е » представляет собой предел числовой последовательности, n - й член которой
, т. е.

.

Натуральный логарифм – логарифм с основанием е. натуральные логарифмы обозначаются
без указания основания.

Число
позволяет переходить от десятичного логарифма к натуральному и обратно.

, его называют модулем перехода от натуральных логарифмов к десятичным.

8. замечательные пределы
,


.

Первый замечательный предел:



таким образом при

по теореме о пределе промежуточной последовательности

второй замечательный предел:

.

Для доказательства существования предела
используют лемму: для любого действительного числа
и
справедливо неравенство
(2) (при
или
неравенство обращается в равенство.)


Последовательность (1) можно записать так:

.

Теперь рассмотрим вспомогательную последовательность с общим членом
убедимся, что она убывает и ограничена снизу:
если
, то последовательность убывает. Если
, то последовательность ограничена снизу. Покажем это:

в силу равенства (2)

т. е.
или
. Т. е. последовательность убывает, а т. к. то последовательность ограничена снизу. Если последовательность убывает и ограничена снизу, то она имеет предел. Тогда

имеет предел и последовательность (1), т. к.

и
.

Л. Эйлер назвал этот предел .

9. односторонние пределы, разрыв функции.

число А левый предел, если для любой последовательности выполняется следующее: .

число А правый предел, если для любой последовательности выполняется следующее: .

Если в точке а принадлежащей области определения функции или её границе, нарушается условие непрерывности функции, то точка а называется точкой разрыва или разрывом функции.если при стремлении точки

12. сумма членов бесконечной убывающей геометрической прогрессии. Геометрическая прогрессия – последовательность, в которой отношение между последующим и предыдущим членами остаётся неизменным, это отношение называется знаменателем прогрессии. Сумма первых n членов геометрической прогрессии выражается формулой
данную формулу удобно использовать для убывающей геометрической прогрессии – прогрессии у которой абсолютная величина её знаменателя меньше нуля.- первый член; - знаменатель прогрессии; - номер взятого члена последовательности. Сумма бесконечной убывающей прогрессии – число, к которому неограничено приближается сумма первых членов убывающей прогрессиии при неограниченном возростании числа .
т. о. Сумма членов бесконечно убывающей геометрической прогрессии равна .

Пусть х – аргумент (независимая переменная); y=y(x) – функция.

Возьмем фиксированное значение аргументах=х 0 и вычислим значение функции y 0 =y(x 0 ) . Теперь произвольным образом зададим приращение (изменение) аргумента и обозначим его х ( х может быть любого знака).

Аргумент с приращением – это точка х 0 + х . Допустим, в ней также существует значение функции y=y(x 0 + х) (см. рисунок).

Таким образом, при произвольном изменении значения аргумента получено изменение функции, которое называется приращением значения функции:

и не является произвольным, а зависит от вида функции и величины
.

Приращения аргумента и функции могут быть конечными , т.е. выражаться постоянными числами, в этом случае их иногда называют конечными разностями.

В экономике конечные приращения рассматриваются весьма часто. Например, в таблице приведены данные о длине железнодорожной сети некоторого государства. Очевидно, приращение длины сети вычисляется путем вычитания предыдущего значения из последующего.

Будем рассматривать длину ж/д сети как функцию, аргументом которой будет время (годы).

Длина ж/д на 31.12, тыс.км.

Приращение

Среднегодовой прирост

Само по себе приращение функции (в данном случае длины ж/д) сети) плохо характеризует изменение функции. В нашем примере из того, что 2,5>0,9 нельзя заключить, что сеть росла быстрее в 2000-2003 годах, чем в 2004 г., потому что приращение 2,5 относится к трехлетнему периоду, а 0,9 – всего к одному году. Поэтому вполне естественно, что приращение функции приводят к единице изменения аргумента. Приращение аргумента здесь – периоды: 1996-1993=3; 2000-1996=4; 2003-2000=3; 2004-2003=1 .

Получим то, что в экономической литературе называют среднегодовым приростом .

Можно избежать операции приведения приращения к единице изменения аргумента, если взять значения функции для значений аргумента, отличающихся на единицу, что не всегда возможно.

В математическом анализе, в частности, в дифференциальном исчислении, рассматривают бесконечно малые (БМ) приращения аргумента и функции.

Дифференцирование функции одной переменной (производная и дифференциал) Производная функции

Приращения аргумента и функции в точке х 0 можно рассматривать как сравнимые бесконечно малые величины (см. тему 4, сравнение БМ), т.е. БМ одного порядка.

Тогда их отношение будет иметь конечный предел, который определяется как производная функции в т х 0 .

    Предел отношения приращения функции к БМ приращению аргумента в точке х=х 0 называется производной функции в данной точке.

Символическое обозначение производной штрихом (а, вернее, римской цифрой I) введено Ньютоном. Можно использовать еще нижний индекс, который показывает, по какой переменной вычисляется производная, например, . Широко используется также другое обозначение, предложенное основоположником исчисления производных, немецким математиком Лейбницем:
. С происхождением этого обозначения вы подробнее познакомитесь в разделеДифференциал функции и дифференциал аргумента.


Данное число оценивает скорость изменения функции, проходящей через точку
.

Установим геометрический смысл производной функции в точке. С этой целью построим график функции y=y(x) и отметим на нем точки, определяющие изменение y(x) в промежутке

Касательной к графику функции в точке М 0
будем считать предельное положение секущейМ 0 М при условии
(точкаМ скользит по графику функции к точкеМ 0 ).

Рассмотрим
. Очевидно,
.

Если точку М устремить вдоль графика функции по направлению к точке М 0 , то значение
будет стремиться к некоторому пределу, который обозначим
. При этом.

Предельный угол совпадает с углом наклона касательной, проведенной к графику функции в т. М 0 , поэтому производная
численно равнаугловому коэффициенту касательной в указанной точке.

-

геометрический смысл производной функции в точке .

Таким образом, можно записать уравнения касательной и нормали (нормаль – это прямая, перпендикулярная касательной) к графику функции в некоторой точке х 0 :

Касательная - .

Нормаль -
.

Представляют интерес случаи, когда эти прямые расположены горизонтально или вертикально (см. тему 3, частные случаи положения прямой на плоскости). Тогда,

если
;

если
.

Определение производной называется дифференцированием функции.

 Если функция в точке х 0 имеет конечную производную, то она называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках некоторого интервала, называется дифференцируемой на этом интервале.

Теорема . Если функция y=y(x) дифференцируема в т. х 0 , то она в этой точке непрерывна.

Таким образом, непрерывность – необходимое (но не достаточное) условие дифференцируемости функции.

2024 mosgenerator.ru. Забота о будущем вашего ребенка. Информационный портал.